Canvas 性能优化:脏矩形渲染

大家好,我是前端西瓜哥。

使用 Canvas 做图形编辑器时,我们需要自己维护自己的图形树,来保存图形的信息,并定义元素之间的关系。

我们改变画布中的某个图形,去更新画布,最简单的是清空画布,然后根据图形树将所有图形再绘制一遍,这在图形较少的情况下是没什么问题的。但如果图形数量很多,那绘制起来可能就出现卡顿了。

那么,有没有什么办法来优化一下?有,脏矩形渲染。

画布该如何更新?

这里我们假设这么一个场景,画布上绘制了随机位置大量的绿球,然后顶层再绘制一个红球。

图片

现在我们希望红球跟着光标进行移动,底层的绿球保存不动,该怎么做更新?

首先我们不考虑 Canvas 分层 的做法,因为我这里只是为了方便,使用了比较简单的场景。实际场景会更复杂,通常是用光标选中一个元素去拖拽它,涉及 图形拾取 的实现,同时元素是会在任意层级的。这里为了聚焦于更新,所以去掉了这些无关紧要的点。

OK,回到正题,思考一下怎么做更新?

一种容易想到的方案是 全量更新,在鼠标移动的时候,将所有的球重新绘制一遍。前面也说了,这在球的数量较少的情况下倒是没什么问题,但如果图形逐渐增多,达到一定数量,就会出现  GPU 的瓶颈,出现掉帧的情况。因为要在非常短的时间内绘制大量的图形。

另一种方案就是本文的主题 脏矩形渲染 了,本质上是局部重绘。

脏矩形渲染原理

在讲解之前,我们先明白几个概念。

  1. 脏矩形:改变某个图形的物理信息后,需要重新渲染的矩形区域,通常为目标图形的当前帧和下一帧组成的包围盒。

  2. 包围盒:包围图形的最小矩形。通常用作低成本的碰撞检测。因为矩形的碰撞检测的算法是简单高效的,而复杂图形的碰撞检测是复杂且低效的。

图片

脏矩形渲染简单来说,就是计算被改变的目标图形两帧所产生的包围盒(脏矩形),将该区域清空,然后将和脏矩形发生相交的所有图形在这个区域内重绘

对于前面移动红球的场景,具体逻辑为:

  1. 计算红球在当前帧和下一帧所形成的包围盒,这个包围盒就是脏矩形;

  2. 遍历绿球的物理信息,计算它们的包围盒,取出和脏矩形发生相交的绿球;

  3. 将脏矩形区域清空;

  4. 将脏矩形设置为裁剪区域,这样保证只能绘制在脏矩形中;

  5. 按顺序绘制绿球,最后绘制红球。按顺序是为了保证层级正确。

相比全部绘制,局部绘制能有效减少需要绘制的图形数量,减少对 GPU 绘制指令的调用,从而提高渲染性能。

这里还有个优化点,就是减少遍历的图形数量,可以使用 四叉树碰撞检测 来做优化,具体读者可以自行网上搜索,晚点我会写一篇文章进行讲解。

脏矩形渲染实现

具体实现请看这个线上 demo:

https://codesandbox.io/s/1jr5lj

其中有下面这么一段代码,你可以通过注释和反注释来选择 “全局渲染” 还是 “脏矩形渲染”。

1
2
3
4
5
6
7
8
9
10
11
12
canvas.addEventListener("mousemove"(e) => {
  const x = e.clientX;
  const y = e.clientY;

  // 全部重渲染(性能很差)
  // ctx.clearRect(0, 0, canvasWidth, canvasHeight);
  // drawGreenBalls(greenBalls);
  // drawRedBall(x, y);

  // 局部重渲染(性能好)
  partRender(x, y);
});

此外,可通过 greenBallCount 变量设置绿球数量,测试性能的上限。

然后说说其中涉及的一些简单的算法,这些算法可以在我的 github 项目中找到:

https://github.com/F-star/graphics-algorithm

TypeScript 类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
export interface IPoint {
  xnumber;
  ynumber;
}

export interface IRect {
  xnumber;
  ynumber;
  widthnumber;
  heightnumber;
}

/**
 * 数组长度必须大于等于 1 的 IRect 数组
 */
export type INoEmptyArray<T> = [T, ...T[]];

export type IBox = IRect;

export interface ICircle {
  xnumber;
  ynumber;
  radiusnumber;
}

(1)求多个圆形组成的包围盒

这个算法用于两帧红球形成的包围盒,也就是脏矩形。以及计算绿球的包围盒。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
 * 多个圆形组成的包围盒
 */
export function getCircleBBox(...circles: INoEmptyArray<ICircle>): IBox {
  // TODO: 优化为一次遍历
  const rectsIRect[] = circles.map((circle) => {
    const { x, y, radius } = circle;
    const d = radius * 2;
    return {
      x: x - radius,
      y: y - radius,
      width: d,
      height: d,
    };
  });
  return getRectBBox(...(rects as INoEmptyArray<IRect>));
}

/**
 * 多个矩形组成的包围盒
 */
export function getRectBBox(...rects: INoEmptyArray<IRect>): IBox {
  const first = rects[0];
  let x = first.x;
  let y = first.y;
  let x2 = x + first.width;
  let y2 = y + first.height;
  for (let i = 1, len = rects.length; i < len; i++) {
    const rect = rects[i];
    if (rect.x < x) {
      x = rect.x;
    }
    if (rect.y < y) {
      y = rect.y;
    }
    const _x2 = rect.x + rect.width;
    if (_x2 > x2) {
      x2 = _x2;
    }
    const _y2 = rect.y + rect.height;
    if (_y2 > y2) {
      y2 = _y2;
    }
  }
  return {
    x,
    y,
    width: x2 - x,
    height: y2 - y,
  };
}

(2)多个矩形是否相交(碰撞)

该算法用于找出和脏矩形碰撞的绿球。

1
2
3
4
5
6
7
8
9
10
11
/**
 * 矩形是否相交
 */
export function isRectIntersect(rect1: IRect, rect2: IRect) {
  return (
    rect1.x <= rect2.x + rect2.width &&
    rect1.x + rect1.width >= rect2.x &&
    rect1.y <= rect2.y + rect2.height &&
    rect1.height + rect1.y >= rect2.y
  );
}

(3)计算特定范围内的随机坐标

用于生成大量随机绿球。

1
2
3
4
5
6
7
8
9
10
function getRandPos(w, h, offset) {
  function getRandInt(min, max) {
    min = Math.floor(min);
    max = Math.ceil(max);
    return Math.floor(Math.random() * (max - min + 1) + min);
  }
  const x = getRandInt(0 + offset, w - offset);
  const y = getRandInt(0 + offset, h - offset);
  return { x, y };
}

性能测试

主要是看 fps。

我们先开启浏览器的 fps 监测。

图片

然后选中这个,即可打开 fps 监测。

图片

绿球在 3300 个的情况下,快速地移动光标让红球不断改变位置。对我的设备来说,测试结果如下。

使用脏矩形渲染的情况下,除了一开始初始化必要的全部渲染外,之后 fps 能稳定在满帧数 59.4 毫无波动(不同的显示器的满 FPS 不同)。

图片

后来我改成 30000 个,结果还是稳定 59.4。主要还是移动的两帧形成的脏矩形太小了,所以重绘的图形数量其实并不多,如果脏矩形变大,渲染性能就会下降。当脏矩形变成画布大小,其实就退化为全局渲染了。

而全局渲染则掉到了 37.8 fps,这还是 3300 个的情况下。

图片

结尾

脏矩形渲染,其实就是局部渲染,找到图形会变化的区域(脏矩形)做去更新,这个区域外都是不变的。找出所有和脏矩形相交的图形,将它们在这个区域内进行更新。

我是前端西瓜哥,欢迎关注我,学习更多前端知识。

本文首发于我的公众号:前端西瓜哥

Canvas 性能优化:脏矩形渲染

https://blog.fstars.wang/posts/dirty-rectangle/

作者

前端西瓜哥

发布于

2022-12-10

更新于

2023-10-14

许可协议